联系人:刘虎
手机:18605367667(微信同号)
联系人:刘晓成
手机:18653628939(微信同号)
电话:0536-7697667
邮箱:814061035@qq.com
网址:www.wfluyuan.cn
地址:山东省潍坊市坊子区凤凰街办双羊街以北坊泰路以西智能装备产业园4号
生产农业机械变速箱总成变速器与拖拉机上其它控制器之间的数据共享通信技术。如ZF公司T7000系列拖拉机将传动系控制系统与动力换挡变速器控制器通过CAN总线集成,使整个传动系可模块化定制,方便系统连接。此外通过拖拉机农业机械变速箱总成厂家各设备之间的信息交换,可实现对发动机、传动系和农具作业状态参数一体化监测与控制,以及远程故障诊断处理等,大大提高了拖拉机使用维护的方便性和可靠性。总之,采用电液控制具有下列优点:(1)可解决换挡平顺性问题,避免换挡冲击,提高换挡品质;(2)可根据作业工况灵活制定换挡策略,以实现不同作业需求,比如顺序换挡,插花换挡,穿梭换挡和可编程换挡等换挡逻辑 ;(3)可与其它机载设备进行联合作业,实现诸如田间巡航、电子地头转向、GPS导航等智能化作业需求,方便驾驶员的操作。
生产农业机械变速箱总成半动力换挡自动变速器是由手动加自动联合控制,其中主变速一般由液压控制的换挡离合器操纵,其挡位可通过控制器依照换挡规律实现自动控制,如卡特彼勒公司Challeng—er 35系列拖拉机就是在其10—16挡高段范围内可自动换挡。而副变速农业机械变速箱总成厂家各速度区段之间的切换最早是由换段杆操纵滑动齿轮来实现,随后发展为啮合套和同步器,使换段更加平顺,迅速,且减小了换段冲击。换段是由驾驶员根据作业经验直接手动控制。如国内福田雷沃公司的P2654以及中国一拖的LZ2404拖拉机装配的就是以手柄操纵的同步器换段机构。
如一台生产农业机械变速箱总成小型拖拉机熄火停放在平坦的路面上,不挂任何挡位,这时一个人用摇把转动柴油机,就能听见清脆的齿轮啃磨声,如果柴油机启动着火,响声则更大。上述情况告诉我们,所有的挡位齿轮已全部脱离接触,又没有负荷,只有Ⅰ轴齿轮与Ⅱ轴副变速高速齿轮常啮合,因此,可以肯定,柴油机空转时农业机械变速箱总成厂家变速箱后桥的异响声来自以上常啮合的两个齿轮。修理时,可先分两步检查,第一步先查Ⅰ轴轴承是否磨损或散架,如果Ⅰ轴失去了平衡转动,也容易产生异响。出现上述情况,假如不是Ⅰ轴轴承损坏,则可能是Ⅱ轴轴向窜动量太大造成的。先检查轴套自由窜动量有多大(应不允许有窜动),如果窜动量在 3 mm 以上,则副变速高速齿轮在轴上的窜动量也在3 mm 以上,这是产生变速箱异响的主要原因。我们在检查已不能定位的两侧轴承时,看看轴承内圈在Ⅱ轴上能否自转,如能自转,加上外圈也不能定位,这就是柴油机转动时相互窜动的结果。
生产农业机械变速箱总成变速箱组装时,可以先将各轴按要求进行分装,然后再按Ⅳ轴、Ⅲ轴、Ⅱ轴、Ⅰ轴的顺序组装。注意装Ⅴ轴前一定先把差速器总成放到变速箱农业机械变速箱总成厂家里。组装顺序也拆卸相反。组装进需注意以下几点:一是装Ⅰ、Ⅱ轴进注意不要忘记齿轮左边的挡圈。二是切勿忘记装拨叉轴右盖里2个拨叉轴之间的互锁销。三是Ⅰ轴左边箱体外的油封要面向外,口朝里,切勿装错,并注意拉紧弹簧不要掉落。四是变速箱体组装好后,其各轴的轴向窜动量不要大于0.2~0.4 mm,各相互咬合齿轮的咬合宽度不能太大,滑动齿轮小于0.5 mm,固定咬合齿轮小于1 mm,倒档齿轮除外。如果达不到要求或拨叉在空档位置时齿轮仍然不脱离咬合,可用铁锤或大的螺丝刀校正拨叉,以保证其齿轮正确咬合。五是装配变速箱各盖时,都要加密封胶,防止漏油。
当生产农业机械变速箱总成变速箱挂入某一挡位,要知道是哪一根轴、哪些轴承、哪些齿轮受力,哪些不受力,哪些是主动,哪些是被动,这就可缩小异响原因的查找范围。农业机械变速箱总成厂家变速箱异响,主要是承受负荷的运转件不良所致。如 CA141 型汽车变速箱在空挡工况时,参与运转的有第一轴、常啮合齿轮副、三四挡啮合齿轮副、倒挡齿轮组,中间轴及有关轴承,但承受负荷的仅有第一轴常啮齿轮及轴承;直接挡工作时,中间轴和第二轴前端滚针轴承并不承受负荷,而其它挡位工作时,二者均有负荷;挡位越低,第二轴后轴承和中间轴后轴承承受负荷越大。这样可根据其不同挡位,判断是哪—对齿轮、哪根轴或哪只轴承受力。
换挡规律通过研究拖拉机农业机械变速箱总成厂家各挡位自动换挡时刻与控制参数(如作业速度、负荷程度、滑转率、发动机输出转速转矩等)之问的关系,并经过性能仿真优化后,确定最佳换挡点 ,避免换挡循环。 目前生产农业机械变速箱总成拖拉机自动变速器换挡规律是从汽车传动系所采用的以车速和油门开度为控制参数的“两参数换挡规律”基础上发展而来的。但这些传统的换挡规律是建立在被控对象精确数字模型基础上,对于拖拉机和工程车辆,由于工况复杂,负荷变化剧烈,建立其精确模型比较困难,使基于数学模型的各类控制方法难以解决这一问题。因此近年来许多研究将智能控制理论应用于换挡规律,如I.Sakai等提出了模糊换挡策略 J,K.Hayashi等提出了根据输入转速和加速踏板位置变化量利用模糊逻辑判断车辆负载和驾驶员意图、根据车辆速度、负载、驾驶员意图和加速踏板位置利用神经网络原理决策换挡位置的智能控制策略 。Jonas Fredrikson采用自适应反馈方法构建控制器,并提出将发动机作为主动控制一部分的非线性换挡控制方法 。现代控制方法的引入,并增加能够反映具体作业状态和环境状态的参数,使得换挡时机和挡位分布更加合理,可以大大提高了车辆的燃油经济性和作业效率。